Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.518
Filter
1.
Anticancer Res ; 44(5): 1915-1924, 2024 May.
Article in English | MEDLINE | ID: mdl-38677747

ABSTRACT

BACKGROUND/AIM: NAD(P)H dehydrogenase [quinone] 1 (NQO1), an antioxidant enzyme, confers resistance to anticancer agents. NQO1 C609T is a single-nucleotide polymorphism associated with reduced protein expression in the non-neoplastic esophageal squamous epithelium (ESE). This study aimed to investigate immunohistochemical NQO1 expression in non-neoplastic ESE and to elucidate its prognostic significance in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant therapy followed by esophagectomy. MATERIALS AND METHODS: NQO1 expression in non-neoplastic ESE was determined in surgical specimens from 83 patients with ESCC using immunohistochemistry. The association between NQO1 expression and clinicopathological factors, and the prognostic significance of NQO1 expression for relapse-free survival (RFS) were statistically evaluated. RESULTS: Patients with complete loss or weak NQO1 expression and patients with moderate or strong NQO1 expression were classified into the NQO1-negative (n=29) and NQO1-positive (n=54) groups, respectively. The downstaging of T classification status after neoadjuvant therapy was significantly more frequent in the NQO1-negative group than in the NQO1-positive group (59% vs. 33%; p=0.036). The NQO1-negative group had significantly more favorable RFS than the NQO1-positive group (p=0.035). Multivariate survival analysis demonstrated that NQO1 negative expression had a favorable prognostic impact on RFS (HR=0.332; 95%CI=0.136-0.812; p=0.016). CONCLUSION: Immunohistochemical evaluation of NQO1 expression in non-neoplastic ESE has clinical utility for predicting patient prognosis after neoadjuvant therapy followed by esophagectomy and might be helpful for selecting candidates for adjuvant therapy to treat ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/mortality , Female , Male , Middle Aged , Prognosis , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Esophagectomy , Neoadjuvant Therapy , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Adult , Immunohistochemistry , Disease-Free Survival , Aged, 80 and over
2.
Biomed Pharmacother ; 174: 116439, 2024 May.
Article in English | MEDLINE | ID: mdl-38518601

ABSTRACT

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.


Subject(s)
Apoptosis , Cell Proliferation , NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Naphthoquinones/pharmacology , Cell Line, Tumor , Phenylethyl Alcohol/pharmacology , Apoptosis/drug effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Cell Proliferation/drug effects , Female , Drug Synergism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/drug effects , Cell Cycle Checkpoints/drug effects
3.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38272025

ABSTRACT

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Antioxidants/therapeutic use , Antioxidants/pharmacology , Retrospective Studies , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Electron Transport Complex I/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism
4.
J Transl Med ; 22(1): 4, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167027

ABSTRACT

NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.


Subject(s)
Alzheimer Disease , Brain Diseases , Brain Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Humans , Carcinogenesis , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neurons/pathology , Oxidative Stress , Brain Diseases/metabolism
5.
Ecotoxicol Environ Saf ; 270: 115853, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128313

ABSTRACT

BACKGROUND: Manganese (Mn) and iron (Fe) are essential trace elements for humans, yet excessive exposure to Mn or Fe can accumulate in the central nervous system (CNS) and cause neurotoxicity. The purpose of this study was to investigate the effects of Mn and Fe exposure, alone or in combination, on inducing oxidative stress-induced neurological damage in rat cortical and SH-SY5Y cells, and to determine whether combined exposure to these metals increases their individual toxicity. METHODS: SH-SY5Y cells and male Sprague-Dawley rats were used to observe the effects of oxidative stress-induced neurological damage induced by exposure to manganese and iron alone or in combination. To detect the expression of anti-oxidative stress-related proteins, Nrf2, HO-1, and NQO1, and the apoptosis-related proteins, Bcl2 and Bax, and the neurological damage-related protein, α-syn. To detect reactive oxygen species generation and apoptosis. To detect the expression of the rat cortical protein Nrf2. To detect the production of proinflammatory cytokines. RESULTS: We demonstrate that juvenile developmental exposure to Mn and Fe and their combination impairs cognitive performance in rats by inducing oxidative stress causing neurodegeneration in the cortex. Mn, Fe, and their combined exposure increased the expression of ROS, Bcl2, Bax, and α-syn, activated the inflammatory factors IL-6 and IL-12, inhibited the activities of SOD and GSH, and induced oxidative stress-induced neurodegeneration both in rats and SH-SY5Y cells. Combined Mn-Fe exposure attenuated the oxidative stress induced by Mn and Fe exposure alone by increasing the expression of antioxidant factors Nrf2, HO-1, and NQO1. CONCLUSION: In both in vivo and in vitro studies, manganese and iron alone or in combination induced oxidative stress, leading to neuronal damage. In contrast, combined exposure to manganese and iron mitigated the oxidative stress induced by exposure to manganese and iron alone by increasing the expression of antioxidant factors. Therefore, studies to elucidate the main causes of toxicity and establish the molecular mechanisms of toxicity should help to develop more effective therapeutic modalities in the future.


Subject(s)
Manganese , Neuroblastoma , Humans , Male , Rats , Animals , Manganese/toxicity , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Iron/metabolism , bcl-2-Associated X Protein/metabolism , Rats, Sprague-Dawley , Oxidative Stress , Apoptosis , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/pharmacology
6.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686150

ABSTRACT

Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a Rosa NIC/NIC::AdiCre lipodystrophy model mouse. The lipodystrophic phenotype that included hepatomegaly accompanied with hepatic damage due to higher lipid accumulation was attenuated substantially by amplified systemic NRF2 signaling in mice with hypomorphic expression of Keap1; whole-body Nrf2 deletion abrogated this protection. To determine whether hepatic-specific NRF2 signaling would be sufficient for protection against hepatomegaly and fatty liver development, direct, powerful, transient expression of Nrf2 or its target gene Nqo1 was achieved by administration through hydrodynamic tail vein injection of pCAG expression vectors of dominant-active Nrf2 and Nqo1 in Rosa NIC/NIC::AdiCre mice fed a 9% fat diet. Both vectors enabled protection from hepatic damage, with the pCAG-Nqo1 vector being the more effective as seen with a ~50% decrease in hepatic triglyceride levels. Therefore, activating NRF2 signaling or direct elevation of NQO1 in the liver provides new possibilities to partially reduce steatosis that accompanies lipodystrophy.


Subject(s)
Fatty Liver , Lipodystrophy , NF-E2-Related Factor 2 , Animals , Mice , Disease Models, Animal , Fatty Liver/genetics , Hepatocytes , Hepatomegaly , Kelch-Like ECH-Associated Protein 1/genetics , Lipids , NF-E2-Related Factor 2/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , Lipodystrophy/genetics , Lipodystrophy/metabolism
7.
PLoS One ; 18(9): e0290900, 2023.
Article in English | MEDLINE | ID: mdl-37695786

ABSTRACT

Using noninvasive radiomics to predict pathological biomarkers is an innovative work worthy of exploration. This retrospective cohort study aimed to analyze the correlation between NAD(P)H quinone oxidoreductase 1 (NQO1) expression levels and the prognosis of patients with hepatocellular carcinoma (HCC) and to construct radiomic models to predict the expression levels of NQO1 prior to surgery. Data of patients with HCC from The Cancer Genome Atlas (TCGA) and the corresponding arterial phase-enhanced CT images from The Cancer Imaging Archive were obtained for prognosis analysis, radiomic feature extraction, and model development. In total, 286 patients with HCC from TCGA were included. According to the cut-off value calculated using R, patients were divided into high-expression (n = 143) and low-expression groups (n = 143). Kaplan-Meier survival analysis showed that higher NQO1 expression levels were significantly associated with worse prognosis in patients with HCC (p = 0.017). Further multivariate analysis confirmed that high NQO1 expression was an independent risk factor for poor prognosis (HR = 1.761, 95% CI: 1.136-2.73, p = 0.011). Based on the arterial phase-enhanced CT images, six radiomic features were extracted, and a new bi-regional radiomics model was established, which could noninvasively predict higher NQO1 expression with good performance. The area under the curve (AUC) was 0.9079 (95% CI 0.8127-1.0000). The accuracy, sensitivity, and specificity were 0.86, 0.88, and 0.84, respectively, with a threshold value of 0.404. The data verification of our center showed that this model has good predictive efficiency, with an AUC of 0.8791 (95% CI 0.6979-1.0000). In conclusion, there existed a significant correlation between the CT image features and the expression level of NQO1, which could indirectly reflect the prognosis of patients with HCC. The predictive model based on arterial phase CT imaging features has good stability and diagnostic efficiency and is a potential means of identifying the expression level of NQO1 in HCC tissues before surgery.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/genetics , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Archives , NADH, NADPH Oxidoreductases , Tomography, X-Ray Computed , NAD(P)H Dehydrogenase (Quinone)/genetics
8.
Int J Oncol ; 63(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37594082

ABSTRACT

Glioblastoma multiforme (GBM) is the most frequent and lethal cancer derived from the central nervous system, of which the mesenchymal (MES) subtype seriously influences the survival and prognosis of patients. NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) serves an important role in the carcinogenesis and progression of various types of cancer; however, the specific mechanism underlying the regulatory effects of NQO1 on GBM is unclear. Thus, the present study aimed to explore the role and mechanism of NQO1 in GBM progression. The results of bioinformatics analysis and immunohistochemistry showed that high expression of NQO1 was significantly related to the MES phenotype of GBM and shorter survival. In addition, MTT, colony formation, immunofluorescence and western blot analyses, and lung metastasis model experiments suggested that silencing NQO1 inhibited the proliferation and metastasis of GBM cells in vitro and in vivo. Furthermore, western blotting showed that the activity of the PI3K/Akt/mTOR signaling pathway was revealed to be inhibited by downregulation of NQO1 expression, whereas it was enhanced by overexpression of NQO1. Notably, co­immunoprecipitation and ubiquitination experiments suggested that Snail was considered an important downstream target of NQO1 in GBM cells. Snail knockdown could eliminate the promoting effect of ectopic NQO1 on the proliferation and invasion of GBM cells, and reduce its effects on the activity of PI3K/Akt/mTOR signaling pathway. These results indicated that NQO1 could promote GBM aggressiveness by activating the PI3K/Akt/mTOR signaling pathway in a Snail­dependent manner, and NQO1 and its relevant pathways may be considered novel targets for GBM therapy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/genetics , Aggression , NAD , NAD(P)H Dehydrogenase (Quinone)/genetics
9.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579180

ABSTRACT

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Subject(s)
Diabetes Mellitus, Type 2 , Naphthoquinones , Humans , Adenosine Triphosphate , Cell Line, Tumor , Diphosphates , Hydrogen Peroxide/metabolism , Inositol , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/pharmacology , Oxygen , Reactive Oxygen Species/metabolism
10.
Ecotoxicol Environ Saf ; 261: 115103, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285672

ABSTRACT

Aristolochic acid (AA) as an emerging contaminant in herbal medicines or crops has been well-recognized for causing nephropathy since 1990s. Over the last decade, mounting evidence has linked AA to liver injury; however, the underlying mechanism is poorly elucidated. MicroRNAs respond to environmental stress and mediate multiple biological processes, thus showing biomarker potentials prognostically or diagnostically. In the present study, we investigated the role of miRNAs in AA-induced hepatotoxicity, specifically in regulating NQO1, the key enzyme responsible for AA bioactivation. In silico analysis showed that hsa-miR-766-3p and hsa-miR-671-5p were significantly associated with AAI exposure as well as NQO1 induction. A 28-day rat experiment of 20 mg/kg AA exposure demonstrated a 3-fold increase of NQO1 and an almost 50 % decrease of the homologous miR-671 that were accompanied with liver injury, which was consistent with in silico prediction. Further mechanistic investigation using Huh7 cells with IC50 of AAI at 146.5 µM showed both hsa-miR-766-3p and hsa-miR-671-5p were able to directly bind to and down-regulate NQO1 basal expression. In addition, both miRNAs were shown to suppress AAI-induced NQO1 upregulation in Huh7 cells at a cytotoxic concentration of 70 µM, and consequently alleviate AAI-induced cellular effects, including cytotoxicity and oxidative stress. Together, these data illustrate that miR-766-3p and miR-671-5p attenuate AAI-induced hepatotoxicity, and thus have monitoring and diagnostic potentials.


Subject(s)
Aristolochic Acids , Chemical and Drug Induced Liver Injury , MicroRNAs , NAD(P)H Dehydrogenase (Quinone) , Animals , Rats , Aristolochic Acids/toxicity , Chemical and Drug Induced Liver Injury/genetics , MicroRNAs/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Humans
11.
Drug Resist Updat ; 70: 100977, 2023 09.
Article in English | MEDLINE | ID: mdl-37321064

ABSTRACT

Drug resistance is a major challenge in cancer treatment. The substrates of NAD(P)H:quinone oxidoreductase 1 (NQO1) show a promising anticancer effect in clinical trials. We previously identified a natural NQO1 substrate 2-methoxy-6-acetyl-7-methyljuglone (MAM) with a potent anticancer effect. The present study was designed to explore the efficacy of MAM in fighting against drug-resistant non-small cell lung cancer (NSCLC). The anticancer effect of MAM was evaluated in cisplatin-resistant A549 and AZD9291-resistant H1975 cells. The interaction of MAM with NQO1 was measured by cellular thermal shift assay and drug affinity responsive target stability assay. The NQO1 activity and expression were measured using NQO1 recombinant protein, Western blotting, and immunofluorescence staining assay. The roles of NQO1 were examined by NQO1 inhibitor, small interfering RNA (siRNA), and short hairpin RNA (shRNA). The roles of reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation were determined. MAM induced significant cell death in drug-resistant cells with similar potency to that of parental cells, which were completely abolished by NQO1 inhibitor, NQO1 siRNA, and iron chelators. MAM activates and binds to NQO1, which triggers ROS generation, LIP increase, and lipid peroxidation. MAM significantly suppressed tumor growth in the tumor xenograft zebrafish model. These results showed that MAM induced ferroptosis by targeting NQO1 in drug-resistant NSCLC cells. Our findings provided a novel therapeutic strategy for fighting against drug resistance by induction of NQO1-mediated ferroptosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Lung Neoplasms/drug therapy , NAD/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Reactive Oxygen Species/metabolism , RNA, Small Interfering/genetics , Zebrafish/genetics , Zebrafish/metabolism , Drug Resistance, Neoplasm
12.
Nat Cancer ; 4(5): 682-698, 2023 05.
Article in English | MEDLINE | ID: mdl-37169843

ABSTRACT

Antisense RNAs are ubiquitous in human cells, yet their role is largely unexplored. Here we profiled antisense RNAs in the MDA-MB-231 breast cancer cell line and its highly lung metastatic derivative. We identified one antisense RNA that drives cancer progression by upregulating the redox enzyme NADPH quinone dehydrogenase 1 (NQO1), and named it NQO1-AS. Knockdown of either NQO1 or NQO1-AS reduced lung colonization in a mouse model, and investigation into the role of NQO1 indicated that it is broadly protective against oxidative damage and ferroptosis. Breast cancer cells in the lung are dependent on this pathway, and this dependence can be exploited therapeutically by inducing ferroptosis while inhibiting NQO1. Together, our findings establish a role for NQO1-AS in the progression of breast cancer by regulating its sense mRNA post-transcriptionally. Because breast cancer predominantly affects females, the disease models used in this study are of female origin and the results are primarily applicable to females.


Subject(s)
Breast Neoplasms , Neoplasms, Second Primary , Skin Neoplasms , Animals , Mice , Female , Humans , Breast Neoplasms/genetics , RNA, Antisense , Quinones/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Melanoma, Cutaneous Malignant
14.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 758-768, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37249337

ABSTRACT

NQO1, a cytosolic enzyme, is closely related to the progression of cancers and poor outcome of cancer patients. However, the molecular biological mechanism of NQO1 tumorigenicity in pancreatic adenocarcinoma (PAAD) has not been clearly understood. In this study, we demonstrate the molecular mechanism of NQO1 in PAAD proliferation, metastasis and fatty acid oxidation (FAO). Multiple databases and western blot analysis show that NQO1 is overexpressed in PAAD and associated with lymph node metastasis and shorter survival. Furthermore, in vitro and in vivo experiments reveal that overexpression of NQO1 improves tumor growth, metastasis and FAO in PAAD. Mechanistically, NQO1 is able to bind to carnitine palmitoyltransferase 1A (CPT1A), a key enzyme controlling FAO. Therefore, Co-IP and a series of rescue experiments demonstrate that NQO1 promotes PAAD progression via CPT1A-mediated FAO. Our findings identify CPT1A-dependent FAO as an essential metabolic pathway for NQO1 to promote the PAAD process. Targeting the NQO1/CPT1A/FAO axis in PAAD to attenuate proliferation and dissemination is a potential approach to promote a better antitumour effect and improve patient outcomes.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/genetics , Cell Line, Tumor , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Pancreatic Neoplasms/genetics , Fatty Acids/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Pancreatic Neoplasms
15.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175546

ABSTRACT

Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , Ovarian Neoplasms , Female , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , Neoplasm Recurrence, Local , Antioxidants , NADH, NADPH Oxidoreductases , Quinones
16.
Brain Behav ; 13(5): e2917, 2023 05.
Article in English | MEDLINE | ID: mdl-37002649

ABSTRACT

PURPOSE: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive dysfunction. Quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that plays an important role in controlling cellular redox state, whose expression is altered in the brain tissues of AD patients. In addition to its traditional antioxidant effects, NQO1 also acts as a multifunctional RNA-binding protein involved in posttranscriptional regulation. Whether the RNA-binding activity of NQO1 influences AD pathology has not been investigated yet. METHODS: The RNA-binding functions of NQO1 in rat pheochromocytoma (PC12) cells were investigated using siRNA knockdown followed by total RNA sequencing. Reverse transcription quantitative polymerase chain reaction was performed to explore the impact of NQO1 on the transcription and alternative splicing of apoptotic genes. RESULTS: NQO1 knockdown led to a significant increase in cellular apoptosis. Genes involved in certain apoptosis pathways, such as positive regulation of apoptotic processes and mitogen-activated protein kinase signaling, were under global transcriptional and alternative splicing regulation. NQO1 regulated the transcription of apoptotic genes Cryab, Lgmn, Ngf, Apoe, Brd7, and Stat3, as well as the alternative splicing of apoptotic genes BIN1, Picalm, and Fyn. CONCLUSION: Our findings suggest that NQO1 participates in the pathology of AD by regulating the expression and alternative splicing of the genes involved in apoptosis. These results extend our understanding of NQO1 in apoptotic pathways at the posttranscriptional level in AD.


Subject(s)
Alternative Splicing , Alzheimer Disease , Rats , Animals , PC12 Cells , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Antioxidants , RNA , NAD(P)H Dehydrogenase (Quinone)/genetics
17.
Genes (Basel) ; 14(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36980879

ABSTRACT

Identifying cellular drivers responsible for enhancing cancer cell resistance to therapeutics provides critical information for designing more effective drugs. Populations of slowly growing, self-renewing, chemo-resistant cells purportedly contribute to the development of therapeutic resistance in many solid tumors. In the current study, we implemented a tumor spheroid model to determine whether NAD(P)H quinone oxidoreductase-1 (NQO1) was requisite for self-renewal and promotion of the drug-resistant phenotype in non-small cell lung cancer (NSCLC). We found that stable depletion of NQO1 in A549 and H358 human NSCLC tumor models inhibits self-renewal capabilities, as demonstrated by a reduced ability to form primary, secondary, and tertiary spheroids. In contrast, the rescue of NQO1 expression restored the tumor cells' ability to form spheroids. Additionally, we discovered that NQO1 depletion renders cisplatin-refractory tumor spheroids highly susceptible to drug treatment. Together, these results suggest that NQO1 loss reduces the self-renewing capabilities of NSCLC cells and enhances their susceptibility to clinically relevant therapeutics. These findings describe a novel role for NQO1 and suggest that combining NQO1-inhibitors with conventional chemotherapeutics may enhance anti-tumor effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , NAD , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NADH, NADPH Oxidoreductases , Quinones , A549 Cells/drug effects , A549 Cells/metabolism
18.
Cell Signal ; 105: 110626, 2023 05.
Article in English | MEDLINE | ID: mdl-36758683

ABSTRACT

BACKGROUND: Studies have confirmed that acute myeloid leukemia (AML) cells with DNA methyltransferase 3A Arg882His (DNMT3A R882H) mutation show an increased proliferation capability. However, the associated mechanism is still unclear. Glycolysis is involved in regulating malignant proliferation of cancer cell. Hence, we analyzed whether the DNMT3A R882H mutation interferes with glycolysis and thereby influences AML cell proliferation. METHODS: We generated AML cell line carrying a DNMT3A-R882H mutation and compared it with the wild type (DNMT3A-WT) with regard to glycolysis regulation. Moreover, we analyzed the cell line's proliferation and apoptosis by a CCK-8 assay, western blotting, and flow cytometry. The role of NRF2/NQO1 signaling in regulating glycolysis was investigated by NRF2-knockdown and Brusatol (specific inhibitor of NRF2) treatment. RESULTS: DNMT3A R882H cells had a higher glucose transport capacity compared to WT cells and their viability could be reduced by glucose deprivation. Moreover, daunorubicin had a slight inhibitory effect on glycolysis while glycolysis inhibition re-sensitized mutant cells to daunorubicin. Obviously, DNMT3A R882H mutation activated the NRF2/NQO1 pathway and enhanced the glycolytic activity in mutant cells. CONCLUSION: Taken together, these results suggest a novel mechanism by which a DNMT3A R882H mutation promotes glycolysis via activation of NRF2/NQO1 pathway. A parallel glycolysis inhibition adds to the anticancer effects of daunorubicin which might lead to a novel therapeutic approach for the treatment of AML patients carrying a DNMT3A R882H mutation.


Subject(s)
DNA Methyltransferase 3A , Leukemia, Myeloid, Acute , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , NF-E2-Related Factor 2/metabolism , Cell Survival , DNA Methylation , Mutation/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Daunorubicin/pharmacology , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism
19.
Theranostics ; 13(3): 873-895, 2023.
Article in English | MEDLINE | ID: mdl-36793872

ABSTRACT

Rationale: Overexpression of NAD(P)H:quinone oxidoreductase 1 (NQO1) is associated with tumor cell proliferation and growth in several human cancer types. However, the molecular mechanisms underlying the activity of NQO1 in cell cycle progression are currently unclear. Here, we report a novel function of NQO1 in modulation of the cell cycle regulator, cyclin-dependent kinase subunit-1 (CKS1), at the G2/M phase through effects on the stability of c­Fos. Methods: The roles of the NQO1/c-Fos/CKS1 signaling pathway in cell cycle progression were analyzed in cancer cells using synchronization of the cell cycle and flow cytometry. The mechanisms underlying NQO1/c-Fos/CKS1-mediated regulation of cell cycle progression in cancer cells were studied using siRNA approaches, overexpression systems, reporter assays, co-immunoprecipitation, pull-down assays, microarray analysis, and CDK1 kinase assays. In addition, publicly available data sets and immunohistochemistry were used to investigate the correlation between NQO1 expression levels and clinicopathological features in cancer patients. Results: Our results suggest that NQO1 directly interacts with the unstructured DNA-binding domain of c-Fos, which has been implicated in cancer proliferation, differentiation, and development as well as patient survival, and inhibits its proteasome-mediated degradation, thereby inducing CKS1 expression and regulation of cell cycle progression at the G2/M phase. Notably, a NQO1 deficiency in human cancer cell lines led to suppression of c-Fos-mediated CKS1 expression and cell cycle progression. Consistent with this, high NQO1 expression was correlated with increased CKS1 and poor prognosis in cancer patients. Conclusions: Collectively, our results support a novel regulatory role of NQO1 in the mechanism of cell cycle progression at the G2/M phase in cancer through effects on c­Fos/CKS1 signaling.


Subject(s)
Cell Cycle , NAD(P)H Dehydrogenase (Quinone) , Neoplasms , Humans , Cell Division , Cell Line, Tumor , G2 Phase , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Neoplasms/genetics
20.
J Biol Chem ; 299(4): 103044, 2023 04.
Article in English | MEDLINE | ID: mdl-36803963

ABSTRACT

Enzymes require flexible regions to adopt multiple conformations during catalysis. The mobile regions of enzymes include gates that modulate the passage of molecules in and out of the enzyme's active site. The enzyme PA1024 from Pseudomonas aeruginosa PA01 is a recently discovered flavin-dependent NADH:quinone oxidoreductase (NQO, EC 1.6.5.9). Q80 in loop 3 (residues 75-86) of NQO is ∼15 Å away from the flavin and creates a gate that seals the active site through a hydrogen bond with Y261 upon NADH binding. In this study, we mutated Q80 to glycine, leucine, or glutamate to investigate the mechanistic significance of distal residue Q80 in NADH binding in the active site of NQO. The UV-visible absorption spectrum reveals that the mutation of Q80 minimally affects the protein microenvironment surrounding the flavin. The anaerobic reductive half-reaction of the NQO-mutants yields a ≥25-fold increase in the Kd value for NADH compared to the WT enzyme. However, we determined that the kred value was similar in the Q80G, Q80L, and wildtype enzymes and only ∼25% smaller in the Q80E enzyme. Steady-state kinetics with NQO-mutants and NQO-WT at varying concentrations of NADH and 1,4-benzoquinone establish a ≤5-fold decrease in the kcat/KNADH value. Moreover, there is no significant difference in the kcat/KBQ (∼1 × 106 M-1s-1) and kcat (∼24 s-1) values in NQO-mutants and NQO-WT. These results are consistent with the distal residue Q80 being mechanistically essential for NADH binding to NQO with minimal effect on the quinone binding to the enzyme and hydride transfer from NADH to flavin.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , NAD , Pseudomonas aeruginosa , Flavins/metabolism , Kinetics , Mutation , NAD/metabolism , Oxidation-Reduction , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...